Energy from Waste: Difference between revisions

Bin52 (talk | contribs)
add page specific text
Bin52 (talk | contribs)
m minor text change
 
(8 intermediate revisions by 2 users not shown)
Line 4: Line 4:
<br clear='left'/>
<br clear='left'/>
==Context and Definition==
==Context and Definition==
In legal terms, a '''‘waste [[incineration]] plant’''' means any stationary or mobile technical unit and equipment dedicated to the [[treatment|thermal treatment]] of waste, with or without [[recovery]] of any energy generated, or whether the gases resulting from the thermal [[treatment]] are subsequently incinerated <ref>As an example, a [[Pyrolysis]] facility that burnt the produced [[Syngas]] to generate electricity would be Incineration, whereas a [[Pyrolysis]] facility that processed [[Syngas]] for vehicle fuel would not be classed as an incinerator</ref><ref name='ref01'>European Commission, 2010 Industrial Emissions Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union.</ref>. If the Incinerator can be shown to meet the energy efficiency measurement of [[R1]] it can be classified as a [[recovery]] facility, if it cannot it is classified as a [[disposal]] facility<ref>https://data.gov.uk/dataset/8287c81b-2288-4f14-9068-52bfda396402/r1-status-of-incinerators-in-england</ref>. This means that an incinerator that generates power, and is a net exporter of power, can be described as an '''[[Energy from Waste]]''' ([[EfW]]) facility. An incinerator that is an [[EfW]] facility that meets the [[R1]] criteria is the only type of incinerator under the legislation that can legitimately describe itself as an '''[[Energy Recovery Facility]]''' ([[ERF]]).  
In legal terms, a '''‘waste [[incineration]] plant’''' means any stationary or mobile technical unit and equipment dedicated to the [[treatment|thermal treatment]] of waste, with or without [[recovery]] of any energy generated, or whether the gases resulting from the thermal [[treatment]] are subsequently incinerated <ref>As an example, a [[Pyrolysis]] facility that burnt the produced [[Syngas]] to generate electricity would be Incineration, whereas a [[Pyrolysis]] facility that processed [[Syngas]] for vehicle fuel would not be classed as an incinerator</ref><ref name='ref01'>European Commission, 2010 Industrial Emissions Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union.</ref>. If the Incinerator can be shown to meet the energy efficiency measurement of [[R1]] it can be classified as a [[recovery]] facility, if it cannot it is classified as a [[disposal]] facility<ref>https://data.gov.uk/dataset/8287c81b-2288-4f14-9068-52bfda396402/r1-status-of-incinerators-in-england</ref>. This means that an [[Incineration|incinerator]] that generates power, and is a net exporter of power, can be described as an '''[[Energy from Waste]]''' ([[EfW]]) facility. An incinerator that is an [[EfW]] facility that meets the [[R1]] criteria is the only type of incinerator under the legislation that can legitimately describe itself as an '''[[Energy Recovery Facility]]''' ([[ERF]]).  


The most recent recent [[BAT|BREF]] guidance<ref name="Inc">[https://ec.europa.eu/jrc/en/news/new-eu-environmental-standards-waste-incineration BAT and BREF for Waste incineration]</ref> also sets out how incinerators can be described by:
The most recent recent [[BAT|BREF]] guidance<ref name="Inc">[https://ec.europa.eu/jrc/en/news/new-eu-environmental-standards-waste-incineration BAT and BREF for Waste incineration]</ref> also sets out how [[Incineration|incinerators]] can be described by:
* waste origin (e.g. Municipal Incinerators), '''and in WikiWaste includes [[Residual Waste EFW]] and [[Biomass Waste EFW]]''',  
* waste origin (e.g. Municipal Incinerators), '''and in WikiWaste includes [[Residual Waste EFW]] and [[Biomass Waste EFW]]''',  
* the nature of the waste (e.g. Hazardous Waste Incinerators), '''and in WikiWaste includes [[Hazardous Waste Incineration]] and [[Clinical Waste Incineration]]''' (which may or may not be [[EfW]]
* the nature of the waste (e.g. Hazardous Waste Incinerators),  
* the method/type of incineration (e.g. High Temperature Incinerators) (which may or may not be [[EfW]])
* the method/type of incineration (e.g. High Temperature Incinerators)
 
In WikiWaste these last two bullet points are covered in '''[[High Temperature and Clinical Waste Incineration]]'''.


However, there are a range of other terms used in the sector to describe different types of incineration and [[Energy from Waste]], the kiln/furnace used, and the [[subsidy]] that may apply to them, and these are captured in the table below:
However, there are a range of other terms used in the sector to describe different types of incineration and [[Energy from Waste]], the kiln/furnace used, and the [[subsidy]] that may apply to them, and these are captured in the table below:
Line 20: Line 22:
|[[Fluidised Bed]]
|[[Fluidised Bed]]
|-
|-
|rowspan=2|[[Gasification]]||rowspan=2|500 - 1600||rowspan=2| [[Advanced Thermal Treatment]] ([[ATT]] and [[ACT]])||[[Rotary]]
|rowspan=2|[[Gasification]]||rowspan=2|500 - 1600||rowspan=2| [[Advanced Thermal Treatment]] ([[ATT]] and [[ACT]])||[[Rotary Kiln]]
 
|-
|-
|rowspan=3|[[Incineration without Energy Recovery|Without Energy Recovery]]||[[Plasma]]
|rowspan=3|[[Incineration without Energy Recovery|Without Energy Recovery]]||[[Plasma]]
Line 29: Line 32:
|}
|}


The large majority of incinerators built and operating to date in the UK are based on 'conventional' [[Combustion]] type incineration, with some development of [[Gasification]] and [[Pyrolysis]] types over the last 10 to 15 years in the UK, with varying degrees of success. These [[ATT]]/[[ACT]] types of technology were encouraged by the [[subsidy]] available for power generation under the [[Renewables Obligation]].  
The large majority of [[Incineration|incinerators]] built and operating to date in the UK are based on 'conventional' [[Combustion]] type incineration, with some development of [[Gasification]] and [[Pyrolysis]] types over the last 10 to 15 years in the UK, with varying degrees of success. These [[ATT]]/[[ACT]] types of technology were encouraged by the [[subsidy]] available for power generation under the [[Renewables Obligation]].  


The three types of incineration'[[EfW]] can have a variety of different furnaces (also termed kilns and reactors) and associated systems to ensure the uniform treatment and residence time of the waste in the kiln/reactor. The most common kilns/furnaces are [[Grate]] based (there are at least five different type of [[Grate]]), with [[Fluidised Bed]] kilns/furnaces more commonly used in [[Gasification]].  
The three types of [[Incineration|incineration]]/[[EfW]] can have a variety of different furnaces (also termed kilns and reactors) and associated systems to ensure the uniform treatment and residence time of the waste in the kiln/reactor. The most common kilns/furnaces are [[Grate]] based (there are at least five different type of [[Grate]]), with [[Fluidised Bed]] kilns/furnaces more commonly used in [[Gasification]].


==Overview==
==Overview==
The energy produced by an [[EfW]] facility can either be converted to electricity to boost the National Grid and/or provide heat in the form of hot water or steam for use by nearby developments. A plant facilitating the generation of electrical power and recovery of usable heat from a combustion process is termed a [[Combined Heat and Power]] ([[CHP]]) plant and it is more efficient than [[EfW]] that is focused on power generation alone.  [[Energy from Waste]] facilities can be used to generate [[Baseload Technologies | base load power]] as they produce a steady, reliable amount of energy but generally cannot be adjusted to meet peak demands. The development of an [[EfW]] plant is complex, with many inter-locking requirements for successful delivery<ref> WRAP, 2012. [http://www.wrap.org.uk/sites/files/wrap/O_And_EFW_Guidance_FULL.pdf EfW Development Guidance. Waste and Resources Action Programme.] </ref>.
The energy produced by an [[EfW]] facility can either be converted to electricity to boost the National Grid and/or provide heat in the form of hot water or steam for use by nearby developments. A plant facilitating the generation of electrical power and recovery of usable heat from a combustion process is termed a [[Combined Heat and Power]] ([[CHP]]) plant and it is more efficient than [[EfW]] that is focused on power generation alone.  [[Energy from Waste]] facilities can be used to generate [[Baseload Technologies | base load power]] as they produce a steady, reliable amount of energy but generally cannot be adjusted to meet peak demands. The development of an [[EfW]] plant is complex, with many inter-locking requirements for successful delivery<ref> WRAP, 2012. [http://www.wrap.org.uk/sites/files/wrap/O_And_EFW_Guidance_FULL.pdf EfW Development Guidance. Waste and Resources Action Programme.] </ref>.


In the most widely used [[EfW]] process, [[waste]] is [[treatment|treated]] via [[Combustion]] on a moving [[Grate]]. Air is introduced above and beneath the [[Grate]] in carefully controlled amounts to ensure proper [[Combustion]]. Good combustion is needed to manage the emissions from an [[EfW]] facility. The hot gases are then released are directed to a boiler to recover the heat. The combustion gases are then cleaned in several stages to strict standards set by the [[Industrial Emissions Directive]], which are monitored by the [[Environment Agency]] ([[EA]]) in England.
In the most widely used [[EfW]] process, [[waste]] is [[treatment|treated]] via [[Combustion]] on a moving [[Grate]]. Air is introduced above and beneath the [[Grate]] in carefully controlled amounts to ensure proper [[Combustion]]. Good combustion is needed to manage the emissions from an [[EfW]] facility. The hot gases which are released are then directed to a boiler to recover the heat. The combustion gases are then cleaned in several stages to strict standards set by the [[Industrial Emissions Directive]], which are monitored by the relevant regulatory authorities including the [[Environment Agency]] ([[EA]]) in England.


[[File:Solid waste energy plant.v3.jpg|800px|center|Adapted from the National Energy Educational Development program by SERC]]
[[File:Solid waste energy plant.v3.jpg|800px|center|Adapted from the National Energy Educational Development program by SERC]]
Line 50: Line 53:
Aside from the desired electricity, heat, steam or chemicals (including fuels) generated from the Energy from Waste process; a range of by-products are also produced.The by-products produced from [[EfW]] processes vary in composition and quantity depending on the type of waste used as a feedstock, and the technology implemented<ref name='ref3' />.
Aside from the desired electricity, heat, steam or chemicals (including fuels) generated from the Energy from Waste process; a range of by-products are also produced.The by-products produced from [[EfW]] processes vary in composition and quantity depending on the type of waste used as a feedstock, and the technology implemented<ref name='ref3' />.


The residual [[Incinerator Bottom Ash]] or [[IBA]] left after the combustion process is generally around 20% of the input tonnage by weight for a [[Residual Waste EFW]] plant, but will vary in quantity and chemical composition depending on the composition of the waste feedstock. This often contains minerals and metals along with non-combustible ash, which is increasingly being recycled into [[Secondary Aggregates]], with some being used for the building of roads once processed (after processing [[IBA]] is termed [[IBBA]]<ref name='ref3'>WRAP, 2019. [http://www.wrap.org.uk/sites/files/wrap/6_O_And_EFW_Guidance_Outputs.pdf EfW Outputs and Residues Guidance on the management of energy outputs and residues including air pollution control residues and incinerator bottom ash. EfW Development Guidance.] [online] [Accessed 30 Oct. 2019].</ref>.
The residual [[Incinerator Bottom Ash]] or [[IBA]] left after the combustion process is generally around 20% of the input tonnage by weight for a [[Residual Waste EFW]] plant, but will vary in quantity and chemical composition depending on the composition of the waste feedstock. This often contains minerals and metals along with non-combustible ash, which is increasingly being recycled into [[Secondary Aggregates]], with some being used for the building of roads once processed (after processing [[IBA]] is termed [[IBBA]])<ref name='ref3'>WRAP, 2019. [http://www.wrap.org.uk/sites/files/wrap/6_O_And_EFW_Guidance_Outputs.pdf EfW Outputs and Residues Guidance on the management of energy outputs and residues including air pollution control residues and incinerator bottom ash. EfW Development Guidance.] [online] [Accessed 30 Oct. 2019].</ref>.


The combustion gases from [[EfW]] are cleaned in several stages to a strict standard set by the [[Waste Incineration Directive]] ([[WID]]), which are monitored by the Environment Agency (EA) in England. This gas cleaning results in a residual [[Flue Ash]] which is around 3% of the overall input to the plant by weight depending on the level of gas cleaning required. [[Fly Ash]] and [[Air Pollution Control]] (APC) residues are often combined. [[APC]] residues contain ash, carbon and lime in varying quantities and is considered a [[Hazardous Waste]] to be disposed of in a [[Hazardous Landfill]], or sometimes to be further processed through washing or stabilisation in order to make it a non-hazardous waste and allow it to be disposed of in a [[Non-hazardous Landfill]]<ref name='ref3' />.
The combustion gases from [[EfW]] are cleaned in several stages to a strict standard set by the [[Industrial Emissions Directive]] ([[IED]]), which are monitored by the Environment Agency (EA) in England. This gas cleaning results in a residual [[Flue Ash]] which is around 3% of the overall input to the plant by weight depending on the level of gas cleaning required. [[Fly Ash]] and [[Air Pollution Control]] (APC) residues are often combined. [[APC]] residues contain ash, carbon and lime in varying quantities and is considered a [[Hazardous Waste]] to be disposed of in a [[Hazardous Landfill]], or sometimes to be further processed through washing or stabilisation in order to make it a non-hazardous waste and allow it to be disposed of in a [[Non-hazardous Landfill]]<ref name='ref3' />.


The [[Syngas]] produced from [[Advanced Conversion Technology | Advanced Conversion Technologies]] is comprised of hydrogen, carbon monoxide and methane. This is often combusted in order to generate electricity or in [[Waste to Chemicals]] processes it can be turned into a fuel<ref name='ref3' />.
The [[Syngas]] produced from [[Advanced Conversion Technology | Advanced Conversion Technologies]] is comprised of hydrogen, carbon monoxide and methane. This is often combusted in order to generate electricity or in [[Waste to Chemicals]] processes it can be turned into a fuel<ref name='ref3' />.


==Emissions==
==Emissions==
The standards for emissions limits, monitoring, waste reception and treatment standards that are acceptable for waste incineration plants were set in the [[Waste Incineration Directive]] (2000/76/EC) and updated in the [[Industrial Emissions Directive]] (2010/75/EU)<ref name='ref01' />. The [[Industrial Emissions Directive]] provides the framework for regulating across the EU and requires such installations to hold a [[Environmental Permit|Permit]] based on the use of [[Best Available Technique]] ([[BAT]]).
The standards for emissions limits, monitoring, waste reception and treatment standards that are acceptable for waste incineration plants were set in the [[Waste Incineration Directive]] (2000/76/EC) and updated in the [[Industrial Emissions Directive]] (2010/75/EU)<ref name='ref01' />. The [[Industrial Emissions Directive]] provides the regulatory framework across the EU and requires such installations to hold a [[Environmental Permit|Permit]] based on the use of [[Best Available Technique]] ([[BAT]]).


On the 3rd December 2019 new EU standards were published for waste incineration <ref name="Inc" /> for new emissions, monitoring and efficiency standards. The new specifications stem from a review of [[Best Available Technique]] ([[BAT]]) Reference Document ([[BAT|BREF]]) for Waste Incineration.
On the 3rd December 2019 new EU standards were published for waste incineration <ref name="Inc" /> for new emissions, monitoring and efficiency standards. The new specifications stem from a review of [[Best Available Technique]] ([[BAT]]) Reference Document ([[BAT|BREF]]) for Waste Incineration.