Eddy Current Separator: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:Eddy Current Separator Magnet and Splitter.jpg|350px|right|Eddy Current Separator Magnet Rotor and Splitter. Image: OKAY Engineering.]] | [[File:Eddy Current Separator Magnet and Splitter.jpg|350px|right|Eddy Current Separator Magnet Rotor and Splitter. Image: OKAY Engineering.]] | ||
An [[Eddy Current Separator]] (ECS) is a machine that is used to separate and recover non-ferrous metals such as aluminium, copper and brass from non-metallic material in a waste stream<ref name="ref1">[https://www.okay.co.uk/project/ecs/ Eddy Current Separators: [[OKAY Engineering]]]</ref>. Material is fed onto the conveyor of the separator, which moves it across the magnetic rotor, situated underneath, to cause in separation. The two resultant streams discharge into different bins/compartments with the aid of the splitter which divides the non-ferrous metal from the non-metallic waste such as paper, plastic, wood or | An [[Eddy Current Separator]] (ECS) is a machine that is used to separate and recover [[Non-Ferrous Metal|non-ferrous metals]] such as aluminium, copper and brass from non-metallic material in a [[Waste|waste]] stream<ref name="ref1">[https://www.okay.co.uk/project/ecs/ Eddy Current Separators: [[OKAY Engineering]]]</ref>. Material is fed onto the conveyor of the separator, which moves it across the magnetic rotor, situated underneath, to cause in separation. The two resultant streams discharge into different bins/compartments with the aid of the splitter which divides the [[Non-Ferrous Metal|non-ferrous metal]] from the non-metallic [[Waste|waste]] such as [[Paper|paper]], [[Plastic|plastic]], [[Wood|wood]] or [[Automotive Shredder Residue|automotive shredder residue]] (known as shedder fluff)<ref name="ref2">[https://www.recyclingtoday.com/article/magnetic-equipment-guide----eddy-current-separators/ Magnetic Equipment Guide - Eddy Current Separators]</ref>. This process is usually employed after magnetic separation has removed the bulk ferrous fraction from a scrap material stream<ref name="ref3">[https://www.sciencedirect.com/science/article/pii/S089268751830582X Eddy Current Separation]</ref>. | ||
<br clear=all> | <br clear=all> | ||
Revision as of 12:33, 2 November 2021
An Eddy Current Separator (ECS) is a machine that is used to separate and recover non-ferrous metals such as aluminium, copper and brass from non-metallic material in a waste stream[1]. Material is fed onto the conveyor of the separator, which moves it across the magnetic rotor, situated underneath, to cause in separation. The two resultant streams discharge into different bins/compartments with the aid of the splitter which divides the non-ferrous metal from the non-metallic waste such as paper, plastic, wood or automotive shredder residue (known as shedder fluff)[2]. This process is usually employed after magnetic separation has removed the bulk ferrous fraction from a scrap material stream[3].
The Magnet Rotor
The key component is the magnetic rotor, which is a series of permanent rare earth magnets mounted on a support plate attached to a shaft. The magnetic rotor is surrounded by, but not attached to, a non-metallic shell which supports the conveyor belt. This allows the rotor to spin independently and at a much higher speed than the non-metallic shell and belt[2].
Benefits
- Very high hit rates
- Very high purity rates
- Compact and flexible
- Removes ranging sizes of non-ferrous materials[1]
The Process
Schematic Diagram of an Eddy Current Separator[3] |
1. The waste stream is fed onto the conveyor belt and is transported towards the magnetic rotor end. |
2. When a piece of non-ferrous metal passes over the magnetic rotor, the magnets inside the shell rotate past the metal at high speed which forms eddy currents to create a magnetic field around the piece of metal. | |
3. The polarity of that magnetic field is the same as the rotating magnet, causing the non-ferrous metal to be repelled away from the magnet. | |
4. This repulsion makes the trajectory of the non-ferrous metal greater than that of the non-metallic, allowing the two material streams to be separated[2]. |